Viale Premuda 14, 20129 Milano - - 0250030724

Watson Studio Methodology - eLearning 

Codice corso: W7067G-WBT
Durata corso: 6.00hr


In this course, you will explore data preparation, data modeling, data visualization, and data cataloging using Watson Studio, Watson Knowledge Catalog, and Watson Machine Learning.


Data scientists, data engineer, business analyst




  • Data science and AI
  • Watson Studio
  • Watson Machine Learning
  • Watson Knowledge Catalog
  • Data refinement
  • Data modeling
  • Data science with notebooks
  • Model deployment


Course Outline

Data science and AI 
• Describe the value of artificial intelligence 
• Explain the AI ladder approach and AI lifecycle 
• Identify the roles for working with data and AI 

Watson Studio 
• Summarize the benefits of Watson Studio 
• Outline the integration of Watson Studio and Watson Machine Learning 
• List and explain the tools available in Watson Studio 
• Sign up for a free IBM Watson account 

Watson Machine Learning 
• Describe machine learning methods and how they fit with AI 
• Create a Watson Studio project for learning models 

Watson Knowledge Catalog 
• Explain the features of Watson Knowledge Catalog 
• Identify the role of data policies to govern data assets 
• List and describe the data files used in this course 
• Create a catalog, add assets to a catalog, and add catalog assets to a project 

Data refinement 
• List the steps to successful data mining 
• Describe the typical customer churn business problem 
• Identify the steps in the data refinement process 
• Shape a data set using the Data Refinery according to specific observations 

Data modeling 
• Differentiate the Watson Studio tools to create models 
• Create a Watson Machine Learning model using AutoAI 
• Create a Machine Learning model using SPSS Modeler 
• Build a model using SparkML Modeler Flow 

Data science with notebooks 
• Experiment with Jupyter notebooks 
• Load from a file and run a Jupyter notebook with Watson Studio 

Model deployment 
• Identify the model repository 
• List model deployment and test options 
• Deploy a model 
• Test a deployed model 

Exercise: Profile creation

WebSphere Application Server administrative console
Exercise: Exploring the administrative console
Introduction to the PlantsByWebSphere application
Application assembly
Exercise: Assembling an application
Application installation
Exercise: Installing an application
Problem determination
Exercise: Problem determination
Introduction to wsadmin and scripting
Exercise: Using wsadmin
WebSphere security
Exercise: Configuring WebSphere Application Server security
Exercise: Configuring application security
Performance monitoring
Exercise: Using the performance monitoring tools
Course summary

P.IVA 06249920965
C.C.I.A.A. REA: MI - 1880014
Cap. Soc. € 12.000,00


Viale Premuda n. 14 ,20129 Milano
Questo indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.
Tel.: +39 02 50030 724
Fax.: +39 02 50030 725

© Copyright DI.GI. Academy
Privacy Policy | Cookie Policy