Viale Premuda 14, 20129 Milano - academy@digiacademy.it - 0250030724

IBM SPSS Modeler for IBM Cloud Pak for Data (V3.0.x) eLearning

Codice corso: 6X334G-WBT
Durata corso: 6h

Overview

IBM SPSS Modeler is a premium service for IBM Cloud Pak for Data V3.0.x This course reviews the basics of how to import, explore, and prepare data, and introduces the student to machine learning models with SPSS Modeler for Cloud Pak for Data.

Audience

  • Clients who are new to IBM SPSS Modeler for IBM Cloud Pak for Data or want to find out more about using it

Prerequisites

  • Knowledge of your business requirements

Objective

• Gain introductory knowledge of SPSS Modeler for IBM Cloud Pak for Data 
• Learn to import, integrate and explore the data 
• Transform fields and identify relationships 
• Get an introduction to machine learning models

Course Outline

Introduction to SPSS Modeler for IBM Cloud Pak for Data 
• Introduction to data science 
• Describe the CRISP-DM methodology 
• Introduction to SPSS Modeler 
• Build models and apply them to new data 

Import and explore the data 
• Describe key terms in working with data 
• Import and export data 
• Audit the data 
• Define missing values 

Integrate data 
• Identify the unit of analysis 
• Remove duplicate records and aggregate data 
• Append and merge datasets 
• Append and merge datasets with incomplete data 

Transform fields 
• Use the Control Language for Expression Manipulation 
• Derive fields 
• Use functions 
• Reclassify fields 

Identify relationships 
• Overview of the nodes to use 
• Explore the relationship between two categorical fields 
• Explore the relationship between a categorical field and a continuous field 
• Explore the relationship between two continuous fields 

Introduction to modeling 
• Identify three types of machine learning models 
• Identify three types of supervised models 
• Identify unsupervised models 
• Deploy machine learning models

P.IVA 06249920965
C.C.I.A.A. REA: MI - 1880014
Cap. Soc. € 12.000,00

Contatti

Viale Premuda n. 14 ,20129 Milano
Questo indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.
Tel.: +39 02 50030 724
Fax.: +39 02 50030 725

© Copyright DI.GI. Academy
Privacy Policy | Cookie Policy