Viale Premuda 14, 20129 Milano - academy@digiacademy.it - 0250030724

IBM InfoSphere QualityStage Essentials V11.5 - SPVC

Codice corso: 2M213G-SPVC
Durata corso: 4gg

Overview

This course teaches how to build QualityStage parallel jobs that investigate, standardize, match, and consolidate data records. Students will gain experience by building an application that combines customer data from three source systems into a single master customer record.

Audience

• Data Analysts responsible for data quality using QualityStage
• Data Quality Architects
• Data Cleansing Developers

Prerequisites

Participants should have:
• Familiarity with the Windows operating system
• Familiarity with a text editor
Helpful, but not required, would be some understanding of elementary statistics principles such as weighted averages and probability.

Objective

•List the common data quality contaminants

•Describe each of the following processes:

  • Investigation
  • Standardization
  • Match
  • Survivorship

•Describe QualityStage architecture

•Describe QualityStage clients and their functions

•Import metadata

•Build and run DataStage/QualityStage jobs, review results

•Build Investigate jobs

•Use Character Discrete, Concatenate, and Word Investigations to analyze data fields

•Describe the Standardize stage

•Identify Rule Sets

•Build jobs using the Standardize stage

•Interpret standardization results

•Investigate unhandled data and patterns

•Build a QualityStage job to identify matching records

•Apply multiple Match passes to increase efficiency

•Interpret and improve match results

•Build a QualityStage Survive job that will consolidate matched records into a single master record

•Build a single job to match data using a Two-Source match

Course Outline

1. Data Quality Issues
• Listing the common data quality contaminants
• Describing data quality processes

2. QualityStage Overview
• Describing QualityStage architecture
• Describing QualityStage clients and their functions

3. Developing with QualityStage
• Importing metadata
• Building DataStage/QualityStage Jobs
• Running jobs
• Reviewing results

4. Investigate
• Building Investigate jobs
• Using Character Discrete, Concatenate, and Word Investigations to analyze data fields
• Reviewing results

5. Standardize
• Describing the Standardize stage
• Identifying Rule Sets
• Building jobs using the Standardize stage
• Interpreting standardize results
• Investigating unhandled data and patterns

6. Match
• Building a QualityStage job to identify matching records
• Applying multiple Match passes to increase efficiency
• Interpreting and improving Match results

7. Survive
• Building a QualityStage survive job that will consolidate matched records into a single master record

8. Two-Source Match
• Building a QualityStage job to match data using a reference match

P.IVA 06249920965
C.C.I.A.A. REA: MI - 1880014
Cap. Soc. € 12.000,00

Contatti

Viale Premuda n. 14 ,20129 Milano
Questo indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.
Tel.: +39 02 50030 724
Fax.: +39 02 50030 725

© Copyright DI.GI. Academy
Privacy Policy | Cookie Policy